Another look at the PHRF-LO handicap adjustment factor "Q" on Lake Ontario.

Steve Corona
February, 152018

BACKGROUND

Time on Time Scoring

The "Q" factor is a variable in the PHRF-LO time on distance (TOD) to time on time (TOT) conversion formula that can be used to adjust the relative handicap between faster and slower boats. The "Q" factor does not change relative positions of individual boat handicaps but rather adjusts the global handicap differences. This is more completely described in my May 9, 2008 white paper "A Study of Q in the PHRF-LO Time on Time Conversion".

The Time on Time multiplier is calculated using the following equation:

$$
T O T=\frac{\sqrt{R}+(Q \times \sqrt{R \times R s})}{\sqrt{R s}+(Q \times \sqrt{R \times R s})}
$$

Where:

$$
\begin{aligned}
\text { TOT }= & \text { Time on Time Multiplier } \quad \text { TOD }=\text { Time on Distance Number } \\
& \text { TODs }=\text { Scratch Boat Time on Distance Number } \\
& R=\frac{8360000}{(T O D+378.2)^{2}} \quad R s=\frac{8360000}{(\text { TODs }+378.2)^{2}}
\end{aligned}
$$

The constants 8360000 and 378.3 and the formulas for R and Rs are used to convert the TOD ($\mathrm{sec} / \mathrm{mile}$) handicap of the boat in question (R) and the "scratch boat" (Rs) to a "rated length" which is a term sometime used in measurement handicap systems and directly relates to the potential hull speed. Rs actually has no effect on the finish position but is used to scale the final corrected time so that corrected time is a meaningful representation of real time.

Evaluating the equations using a single Q and Rs value and applying the constants results in a simple equation of the form:

$$
\mathrm{TOT}=\frac{\mathrm{A}}{\mathrm{~B}+\mathrm{TOD}}
$$

Where A is a factor directly related to the scratch boat value and B is related to the Q value. The factor A can be adjusted without changing boat finishing positions but changing the B value will change the effective rating of the boats (Q adjustment) and could cause a change in finishing positions in any race.

History of the Q value

Initially Q was set to 0.000 on Lake Ontario but the subsequent race results were perceived as favoring slower rated boats and Q was changed to a value of 0.045 . The Q variable was somewhat forgotten and remained at the 0.045 value for many years. As personal computers became available allowing easy large scale number crunching, PHRF-LO began accumulating race data and initiated the use of race data to predict boat performance and adjust handicaps. A concern later arose, that even with the individual boat rating adjustments, that there might still be an endemic bias in the race results. In 2008 Andrew Sensicle and I (PHRF-LO technical committee members) began to study race results to evaluate and, if needed, optimize the Q value. The result of the 2008 analysis showed that there was indeed a bias towards faster boats in any division and fairer race results could be obtained by lowering the Q variable closer to its initial value of zero. The technical committee spent another year looking at additional race results and finally recommended that PHRF-LO consider adjusting the value of Q to 0.008 .

In 2009 PHRF-LO adjusted the Q value to 0.008 where it has remained. The Q value of 0.008 and a scratch boat rating of 165 results in a simplified conversion formula of:

$$
T O T=\frac{566.431}{401.431+T O D}
$$

Here we are in 2018

Over the last nine years we have accumulated more race data, added new boats, adjusted individual handicaps, and perhaps had slightly different race conditions. A new study would consider these potential differences and challenge the existing Q value.

The analysis technique utilizes an iterative method that systematically adjusts the Q value (race by race) to find a Q that produces no bias in the resulting corrected data as determined by a linear regression of boat rating vs. corrected time. When the linear regression calculates a slope of zero any bias due to rating differences has been adjusted out. A potential problem with this method is that an optimum Q value (zero slope) cannot be calculated for all races. For example, if a boat of slower handicap finishes ahead of a faster rated boat in elapsed time, an optimum Q value cannot be obtained. Additionally races with very little rating spread and/or large difference in scratch time will not optimize with realistic Q values. Q must be between approximately - 0.14 and 0.99 to be usable. It is observed that the results of about one third of the race data are discarded with this analysis method.

Classical statistical sampling theory tells us that a "population" of data can be identified by a much smaller number of datum if the population is sampled randomly. This is a basic statistical axiom that finds use in a great many industrial and scientific applications. By excluding one
third the data, possibly non-randomly and without fully understanding the implications, we risk introducing selection bias and potential error in the results.

Analysis

The original computer program used to find the optimum Q for each race was written 29 years ago using a programing language called Microsoft Quick Basic 4.5. Unfortunately this language is no longer supported by Microsoft and can only be run in a Microsoft DOS environment. This left a choice of either rewriting the program in a currently supported language or procure a machine running an old DOS based system. The latter was clearly the quickest and more reliable path so an old PC running Windows XP was resurrected and set up to run the software. Since small changes in the program were made, and a direct comparison to previous data was desired, the older data was re-analyzed along with the new race data so that a direct comparison could be made.

The race data was divided into 6 separate sets of data from years 2000-2006, 2007-2009, and 2013-2017 each separated into flying sail and non-flying sail groups. Each data set contains several thousand individual races that were individually corrected and optimized. Because of the non-linearity of Q to corrected time, the resulting distribution of optimum Q's for each data set is skewed and truncated at the low end. Because of the difference of this distribution to a normal distribution the median is probably a better estimator of the optimum Q than the mean. The graph below shows a typical distribution of optimum Q values.

The following two pages containing contain the results of the analysis for all six data sets. Perhaps more important than the absolute values, the graphs of the trends show that while there are small differences from year to year groups, there is no consistent evidence that the new race data (2013-2017) is significantly different than the older previously analyzed data.

Flying Sail Optimum Q

All Data			
	$2000-2006$	$2007-2009$	$2013-2017$
Mean	0.0298	0.0388	0.0370
Median	-0.0182	-0.0066	-0.0197
Mode	0.0080	0.0080	-0.0475
Standard Deviation	0.1773	0.1666	0.1892
Sample Variance	0.0314	0.0277	0.0358
Range	1.1374	1.1372	1.1373
Minimum	-0.1419	-0.1417	-0.1418
Maximum	0.9955	0.9955	0.9955
Sum	153.3236	108.0278	116.8361
Count	5148.0000	2784.0000	3156.0000
Largest(1)	0.9955	0.9955	0.9955
Smallest(1)	-0.1419	-0.1417	-0.1418

Ratings Less than 100			
	$2000-2006$	$2007-2009$	$2013-2017$
Mean	0.0575	0.0250	-0.0072
Median	0.0184	-0.0065	-0.0549
Mode	-0.0260	-0.0867	-0.0049
Standard Deviation	0.1645	0.1360	0.1519
Sample Variance	0.0271	0.0185	0.0231
Range	1.1116	1.0644	1.1311
Minimum	-0.1411	-0.1314	-0.1418
Maximum	0.9705	0.9330	0.9893
Sum	16.6861	7.3504	-3.3490
Count	290.0000	294.0000	464.0000
Largest(1)	0.9705	0.9330	0.9893
Smallest(1)	-0.1411	-0.1314	-0.1418

Ratings 100 and Greater			
	$2000-2006$	$2007-2009$	$2013-2017$
Mean	0.0211	0.0307	0.0280
Median	-0.0382	-0.0220	-0.0376
Mode	0.0080	0.0080	-0.0033
Standard Deviation	0.1887	0.1761	0.1944
Sample Variance	0.0356	0.0310	0.0378
Range	1.1280	1.1247	1.1372
Minimum	-0.1419	-0.1417	-0.1417
Maximum	0.9861	0.9830	0.9955
Sum	64.0240	43.6909	44.1302
Count	3039.0000	1422.0000	1578.0000
Largest(1)	0.9861	0.9830	0.9955
Smallest(1)	-0.1419	-0.1417	-0.1417

Non-Flying Sail Optimum Q

All Data			
	$2000-2006$	$2007-2009$	$2013-2017$
Mean	0.041838	0.019345	0.025063
Median	-0.024000	-0.031300	-0.030500
Mode	0.008	0.0213	0.008
Standard Deviation	0.198583	0.166796	0.181838
Sample Variance	0.039435	0.027821	0.033065
Range	1.131300	1.137400	1.137500
Minimum	-0.142000	-0.141900	-0.142000
Maximum	0.989300	0.995500	0.995500
Sum	139.363500	38.244900	86.543500
Count	3331	1977	3453
Largest(1)	0.989300	0.995500	0.995500
Smallest(1)	-0.142	-0.1419	-0.142

Ratings Less than 100			
	$2000-2006$	$2007-2009$	$2013-2017$
Mean	0.228146		0.041378
Median	0.303300		-0.004650
Mode	\#N/A		\#N/A
Standard Deviation	0.347981	NO	0.125242
Sample Variance	0.121091	DATA	0.015686
Range	0.834000	IN	0.387200
Minimum	-0.138500	THIS	-0.108100
Maximum	0.695500	RANGE	0.279100
Sum	2.965900		0.744800
Count	13		18
Largest(1)	0.695500		0.279100
Smallest(1)	-0.1385		-0.1081

Ratings 100 and Greater			
	$2000-2006$	$2007-2009$	$2013-2017$
Mean	0.038896	0.019026	0.025776
Median	-0.031650	-0.036900	-0.036900
Mode	0.008	0.0213	0.008
Standard Deviation	0.202909	0.173765	0.189789
Sample Variance	0.041172	0.030194	0.036020
Range	1.131300	1.137400	1.137500
Minimum	-0.142000	-0.141900	-0.142000
Maximum	0.989300	0.995500	0.995500
Sum	108.908400	31.373400	69.853300
Count	2800	1649	2710
Largest(1)	0.989300	0.995500	0.995500
Smallest(1)	-0.142	-0.1419	-0.142

The 2008 analysis showed that there was a correlation of rating to the calculated optimum Q . The lower rated (faster) handicaps on average required a higher numerical Q value than the
higher rated (slower) boats. This study appears to show that the difference of optimum Q due to rating is narrowing with time.

It should be remembered that numerically lowering the Q value in the conversion formula provides additional handicap to slower rated boats in any division and adjusting Q values numerically higher provides more handicap to faster rated boats.

An Alternate Analysis Approach

Considering the potential problems of the iterative analysis approach and the resulting loss of data, a more straight forward and simpler approach was considered. Every race might not have an optimum Q value but every race has a regression slope of the handicap vs. the corrected time that is either positive or negative (almost never exactly zero). A positive slope indicates the faster rated boats are advantaged and a negative slope indicates the slower rated boats are advantaged in that race. A measure of equitability is proposed that over a large number of races, there should be an equal number of positive and negative slope races, half the races favoring the slower rated and half the races favoring the faster rated boats. The value of Q that satisfies this requirement is optimum.

Using this method (called technique 2) each data set was corrected over a range of Q values to find the Q that produced an equal number of positive and negative corrected time data slopes (the center point). The following histogram shows the population of data slopes for the 2013-2017 flying sail data set at the optimum $\mathrm{Q}=0.013$. The slopes are symmetrically arranged around the slope zero point at the optimum Q value.

The following charts show the results of this analysis using the slope technique for each of the six data sets. The Q values around the optimum value (highlighted) are also shown to show the effect of slight Q differences around the optimum.

2013-2017 Flying Sail					
\mathbf{Q}	Slope Mean	Slope Median	Races $<\mathbf{0}$	\# Races $\mathbf{= 0}$	\# Races $>\mathbf{0}$
$\mathbf{0}$	0.000880	-0.000142	2509	0	2222
0.002	0.000910	-0.000119	2486	1	2244
0.004	0.000930	-0.000099	2464	0	2267
0.008	0.000980	-0.000054	2423	1	2307
0.01	0.001000	-0.000033	2402	2	2327
0.012	0.001020	-0.000014	2382	1	2348
0.013	0.001030	-0.000007	2371	0	2360
0.014	0.001040	0.000003	2357	5	2369
0.016	0.001070	0.000025	2336	3	2392
0.045	0.001320	0.000261	2109	1	2621

2013-2017 Non-Flying Sail					
\mathbf{Q}	Slope Mean	Slope Median	\# Races $<\mathbf{0}$	\# Races $\mathbf{= 0}$	\# Races $>$
0.004	-0.000090	-0.000021	2436	1	2349
0.008	-0.000052	0.000008	2407	1	2377
0.009	-0.000043	0.000016	2398	1	2386
0.01	-0.000034	0.000026	2390	0	2395
0.011	-0.000025	0.000034	2385	0	2400
0.012	-0.000016	0.000044	2380	3	2402
0.016	0.000019	0.000077	2340	1	2439

2007-2009 Flying Sail						
Q	Slope Mean	Slope Median	\# Races $<\mathbf{0}$	\#Races $\mathbf{= 0}$	\#Races $>\mathbf{0}$	
-0.004	0.000371	-0.002100	2094	2	1705	
0.000	0.000427	-0.000159	2048	0	1753	
0.004	0.000480	-0.000102	2004	1	1796	
0.008	0.000531	-0.000059	1963	0	1838	
0.012	0.000519	-0.000019	1920	1	1880	
0.014	0.000602	0.000000	1900	1	1900	
0.015	0.000914	0.000011	1888	1	1912	
0.016	0.000625	0.000019	1878	1	1922	
0.017	0.000636	0.000031	1870	1	1930	

2007-2009 Non-Flying Sail						
Q	Slope Mean	Slope Median	\# Races $<\mathbf{0}$	\# Races $\mathbf{= 0}$	\# Races $>\mathbf{0}$	
-0.004	0.000125	-0.000013	1456	0	1439	
-0.003	0.000136	-0.000003	1450	0	1445	
-0.0025	0.000142	0.000002	1446	1	1448	
-0.002	0.000147	0.000009	1441	1	1453	
-0.001	0.000157	0.000019	1437	0	1458	
0.000	0.000168	0.000032	1432	0	1463	
0.006	0.000229	0.000089	1382	1	1512	

2000-2006 Flying Sail						
Q	Slope Mean	Slope Median	\# Races $<\mathbf{0}$	\# Races $\mathbf{= 0}$	\# Races $>\mathbf{0}$	
-0.002	-0.000260	-0.000191	3874	0	3280	
0.000	-0.000232	-0.000169	3832	0	3322	
0.006	-0.000152	-0.000098	3728	2	3424	
0.014	-0.000053	-0.000014	3595	2	3557	
0.015	-0.000041	-0.000002	3580	1	3573	
0.016	-0.000030	0.000008	3562	2	3590	
0.018	-0.000007	0.000028	3527	1	3626	

2000-2006 Non-Flying Sail					
\mathbf{Q}	Slope Mean	Slope Median	R Races $<\mathbf{0}$	\# Races $\mathbf{= 0}$	\# Races $>\mathbf{0}$
0.010	0.000137	-0.000110	2616	0	2405
0.015	0.000183	-0.000072	2593	1	2427
0.017	0.000201	-0.000054	2572	2	2447
0.019	0.000218	-0.000039	2555	1	2465
0.02	0.000227	-0.000032	2544	2	2475
0.022	0.000244	-0.000014	2525	0	2496
0.023	0.000252	-0.000009	2518	1	2502
0.024	0.000261	-0.000001	2512	1	2508
0.025	0.000269	0.000004	2499	5	2517
0.026	0.000277	0.000013	2496	0	2525

Comparing the old and new calculation methods

If the first set of data wasn't confusing enough we just added another set of results. Putting the optimum Q's of both systems in one place yields the following chart:

Optimum Q by 2 Methods			
	Flying Sail Data		
	2000-2006	2007-2009	2013-2017
Technique 1	-0.018 (.030)	-0.007 (.039)	-0.02 (.037)
Technique 2	0.015	0.014	0.013
	Non-Flying Sail		
	2000-2006	2007-2009	2013-2017
Technique 1	-0.024 (.042)	-0.031 (.019)	-0.03 (.025)
Technique 2	0.024	-0.0025	0.01
	Technique 1: median (mean)		

At first glance the results of the two techniques don't seem to match but in reality they are reasonably close considering the differences in analysis method. Technique \#1 generally yielded Q's that are slightly below our present 0.008 Q value and technique \#2 yields Q's that are generally slightly above our present $\mathrm{Q}=0.008$ value.

If we were to calculate the average median value for technique \#1 (optimum Q) it would be minus (-) 0.009 and for technique \#2 it would be positive (+) 0.012 . Our present $\mathrm{Q}=0.008$ is nestled comfortably between these two values. To better understand the consequence of that magnitude of Q change we use another spreadsheet to calculate the differences.

T/D\#	ORIGINAL T/T Multiplier $Q=$	$\begin{array}{\|c} \hline \text { NEW } \\ \text { T/T } \\ \text { Multiplier } \\ Q= \\ \hline \end{array}$	\% Change	EQUIV. NEW TOD	TOD Change from Original	T/D\#	ORIGINAL T/T Multiplier Q =	NEW T/T Multiplier $Q=$	\% Change	$\begin{array}{\|c\|} \hline \text { EQUIV. } \\ \text { NEW TOD } \\ \hline \end{array}$	TOD Change from Original
	0.008	0.012					0.008	0.012			
-21	1.4889	1.4745	-0.97\%	-17	4	141	1.0442	1.0433	-0.09\%	141	0
-15	1.4658	1.4523	-0.92\%	-11	4	147	1.0328	1.0321	-0.07\%	147	0
-9	1.4434	1.4307	-0.88\%	-6	3	153	1.0216	1.0212	-0.04\%	153	0
-3	1.4217	1.4098	-0.84\%	0	3	159	1.0107	1.0105	-0.02\%	159	0
3	1.4006	1.3894	-0.80\%	6	3	165	1.0000	1.0000	0.00\%	165	0
9	1.3801	1.3697	-0.75\%	12	3	171	0.9895	0.9897	0.02\%	171	0
15	1.3602	1.3505	-0.72\%	18	3	177	0.9793	0.9797	0.04\%	177	0
21	1.3409	1.3318	-0.68\%	24	3	183	0.9692	0.9698	0.06\%	183	0
27	1.3221	1.3136	-0.64\%	30	3	189	0.9594	0.9601	0.08\%	189	0
33	1.3038	1.2960	-0.60\%	36	3	195	0.9497	0.9507	0.10\%	194	-1
39	1.2861	1.2788	-0.57\%	42	3	201	0.9402	0.9414	0.12\%	200	-1
45	1.2688	1.2620	-0.53\%	47	2	207	0.9310	0.9323	0.14\%	206	-1
51	1.2520	1.2457	-0.50\%	53	2	213	0.9219	0.9233	0.16\%	212	-1
57	1.2356	1.2298	-0.47\%	59	2	219	0.9130	0.9146	0.17\%	218	-1
63	1.2196	1.2143	-0.44\%	65	2	225	0.9042	0.9060	0.19\%	224	-1
69	1.2041	1.1992	-0.41\%	71	2	231	0.8956	0.8975	0.21\%	230	-1
75	1.1889	1.1844	-0.38\%	77	2	237	0.8872	0.8892	0.23\%	236	-1
81	1.1741	1.1700	-0.35\%	83	2	243	0.8790	0.8811	0.24\%	241	-2
87	1.1597	1.1560	-0.32\%	89	2	249	0.8709	0.8731	0.26\%	247	-2
93	1.1456	1.1423	-0.29\%	94	1	255	0.8629	0.8653	0.28\%	253	-2
99	1.1319	1.1289	-0.26\%	100	1	261	0.8551	0.8576	0.29\%	259	-2
105	1.1185	1.1158	-0.24\%	106	1	267	0.8474	0.8500	0.31\%	265	-2
111	1.1054	1.1031	-0.21\%	112	1	273	0.8399	0.8426	0.32\%	271	-2
117	1.0926	1.0906	-0.18\%	118	1	279	0.8361	0.8389	0.33\%	274	-2
123	1.0801	1.0784	-0.16\%	124	1	285	0.8288	0.8317	0.34\%	280	-2
129	1.0679	1.0664	-0.14\%	130	1	291	0.8216	0.8245	0.36\%	286	-2
135	1.0559	1.0547	-0.11\%	136	1	297	0.8145	0.8175	0.37\%	291	-3

As can be seen from the columns labeled "TOD Change from Original", for a Q change from 0.008 to 0.012 there would be only a 7 second per mile change in relative rating over the whole handicapping range. This magnitude of rating change is insignificant.

Looking next at the results from technique \#1 and an average change to $\mathrm{Q}=-.009$ the change over the entire range (PHRF -21 to 297) would produce a rating difference of $30 \mathrm{sec} / \mathrm{mile}$. Within a typical division of $60 \mathrm{sec} / \mathrm{mile}$ this would account for about a 6 sec per mile change from fastest to slowest rated boats. This is a more significant change and its effect on a racing division could be noticeable.

T/D\#	ORIGINAL T/T Multiplier $Q=$	$\begin{array}{\|c\|} \hline \text { NEW } \\ \text { T/T } \\ \text { Multiplier } \\ Q= \\ \hline \end{array}$	\% Change	EQUIV. NEW TOD	TOD Change from Original	T/D\#	ORIGINAL T/T Multiplier $Q=$	NEW T/T Multiplier $Q=$	\% Change	EQUIV. NEW TOD	TOD Change from Original
	0.008	-0.009					0.008	-0.009			
-21	1.4889	1.5615	4.87\%	-39	-18	141	1.0442	1.0487	0.42\%	139	-2
-15	1.4658	1.5337	4.63\%	-32	-17	147	1.0328	1.0361	0.31\%	145	-2
-9	1.4434	1.5069	4.40\%	-26	-17	153	1.0216	1.0237	0.21\%	152	-1
-3	1.4217	1.4810	4.17\%	-19	-16	159	1.0107	1.0117	0.10\%	158	-1
3	1.4006	1.4560	3.96\%	-12	-15	165	1.0000	1.0000	0.00\%	165	0
9	1.3801	1.4318	3.75\%	-6	-15	171	0.9895	0.9885	-0.10\%	172	1
15	1.3602	1.4084	3.54\%	1	-14	177	0.9793	0.9773	-0.20\%	178	1
21	1.3409	1.3858	3.35\%	7	-14	183	0.9692	0.9664	-0.29\%	185	2
27	1.3221	1.3638	3.16\%	14	-13	189	0.9594	0.9557	-0.38\%	191	2
33	1.3038	1.3426	2.97\%	20	-13	195	0.9497	0.9452	-0.48\%	198	3
39	1.2861	1.3220	2.79\%	27	-12	201	0.9402	0.9349	-0.56\%	204	3
45	1.2688	1.3021	2.62\%	34	-11	207	0.9310	0.9249	-0.65\%	211	4
51	1.2520	1.2827	2.45\%	40	-11	213	0.9219	0.9151	-0.74\%	218	5
57	1.2356	1.2639	2.29\%	47	-10	219	0.9130	0.9055	-0.82\%	224	5
63	1.2196	1.2456	2.13\%	53	-10	225	0.9042	0.8961	-0.90\%	231	6
69	1.2041	1.2279	1.98\%	60	-9	231	0.8956	0.8868	-0.98\%	237	6
75	1.1889	1.2106	1.83\%	66	-9	237	0.8872	0.8778	-1.06\%	244	7
81	1.1741	1.1939	1.68\%	73	-8	243	0.8790	0.8690	-1.14\%	250	7
87	1.1597	1.1776	1.54\%	80	-7	249	0.8709	0.8603	-1.21\%	257	8
93	1.1456	1.1617	1.40\%	86	-7	255	0.8629	0.8518	-1.29\%	264	9
99	1.1319	1.1463	1.27\%	93	-6	261	0.8551	0.8435	-1.36\%	270	9
105	1.1185	1.1312	1.14\%	99	-6	267	0.8474	0.8353	-1.43\%	277	10
111	1.1054	1.1166	1.01\%	106	-5	273	0.8399	0.8273	-1.50\%	283	10
117	1.0926	1.1023	0.89\%	112	-5	279	0.8361	0.8233	-1.53\%	287	11
123	1.0801	1.0884	0.77\%	119	-4	285	0.8288	0.8155	-1.60\%	293	11
129	1.0679	1.0748	0.65\%	126	-3	291	0.8216	0.8079	-1.67\%	300	12
135	1.0559	1.0616	0.53\%	132	-3	297	0.8145	0.8004	-1.73\%	306	12

Conclusions

1. There doesn't appear to be any significant difference in the optimum Q of the 2013-2017 race data to earlier data.
2. The difference in calculated optimum Q value for boats with ratings under $100 \mathrm{sec} / \mathrm{mile}$ to boats over $100 \mathrm{sec} / \mathrm{mile}$ has narrowed (a single Q value for all ratings is less of a compromise).
3. The new analysis method (technique \#2) appears to be a viable, if not a preferred, way to calculate Q value due to its simplicity, ease of calculation, and avoidance of potential selection error.

Recommendation

Considering the slight difference in the results of the two calculation methods and consideration of the present value of Q , a change from the present Q value of 0.008 does not appear to be warranted.

Acknowledgements

Many thanks to Diana Riley for supplying the data required for this analysis.

